Angiosperm phylogeny based on matK sequence information.

نویسندگان

  • Khidir W Hilu
  • Thomas Borsch
  • Kai Müller
  • Douglas E Soltis
  • Pamela S Soltis
  • Vincent Savolainen
  • Mark W Chase
  • Martyn P Powell
  • Lawrence A Alice
  • Rodger Evans
  • Hervé Sauquet
  • Christoph Neinhuis
  • Tracey A B Slotta
  • Jens G Rohwer
  • Christopher S Campbell
  • Lars W Chatrou
چکیده

Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperms. The matK gene evolves approximately three times faster than the widely used plastid genes rbcL and atpB. The MP and BI trees are highly congruent. The robustness of the strict consensus tree supercedes all individual gene analyses and is comparable only to multigene-based phylogenies. Of the 385 nodes resolved, 79% are supported by high jackknife values, averaging 88%. Amborella is sister to the remaining angiosperms, followed by a grade of Nymphaeaceae and Austrobaileyales. Bayesian inference resolves Amborella + Nymphaeaceae as sister to the rest, but with weak (0.42) posterior probability. The MP analysis shows a trichotomy sister to the Austrobaileyales representing eumagnoliids, monocots + Chloranthales, and Ceratophyllum + eudicots. The matK gene produces the highest internal support yet for basal eudicots and, within core eudicots, resolves a crown group comprising Berberidopsidaceae/Aextoxicaceae, Santalales, and Caryophyllales + asterids. Moreover, matK sequences provide good resolution within many angiosperm orders. Combined analyses of matK and other rapidly evolving DNA regions with available multigene data sets have strong potential to enhance resolution and internal support in deep level angiosperm phylogenetics and provide additional insights into angiosperm evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First insights into fern matK phylogeny.

MatK, the only maturase gene in the land plant plastid genome, is a very popular phylogenetic marker that has been extensively applied in reconstructing angiosperm phylogeny. However, the use of matK in fern phylogeny is largely unknown, due to difficulties with amplification: ferns have lost the flanking trnK exons, typically the region used for designing stable priming sites. We developed pri...

متن کامل

Molecular Phylogeny of the Genus Lathyrus (Fabaceae-Fabeae) Based on cpDNA matK Sequence in Iran

Background: More than 60 species of the genus Lathyrus are distributed in Southwest Asia. It is the second largest genus of the tribe Fabeae, after Vicia, in the region (and in Iran with 23 species). In the regional Flora (Flora of Turkey, FloraIranicaand flora...

متن کامل

A comparison of group II introns of plastid tRNALysUUU genes encoding maturase protein.

All higher plant plastid genomes have six classes of tRNA genes containing introns. One of those is the tRNALysUUU gene, which encodes maturase protein. In the case of liverwort species from the genus Porella and mosses from the genus Plagiomnium, the maturase coding gene (matK) represents a truncated form of other plant matK genes: several subdomains of the reverse transcriptase-like domain an...

متن کامل

Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron of nonphotosynthetic plants.

In a striking contrast, matK is one of the most rapidly evolving plastid genes and also one of the few plastid genes to be retained in all nonphotosynthetic plants examined to date. DNA sequences of this region were obtained from photosynthetic and nonphotosynthetic plants of Orobanchaceae and their relatives. The resulting plastid DNA phylogeny was congruent with that recently obtained from an...

متن کامل

The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species

Oryza minuta, a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 90 12  شماره 

صفحات  -

تاریخ انتشار 2003